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Abstract 

The general principle of the projection method and 
an index scheme for decagonal phases are described 
systematically. Kikuchi-line patterns over a large 
angular range from an Al70Co~sNi~5 decagonal 
quasicrystal with a periodicity of 4 A  along the 
tenfold axis were obtained by connecting a series of 
large-angle convergent-beam electron diffraction pat- 
terns. Computer-simulated electron diffraction pat- 
terns of major zone axes and Kikuchi-line patterns 
covering the whole orientation triangle show good 
agreement with the patterns recorded experimentally. 
After discussion of the inflation and deflation 
properties, appropriate quasilattice parameters of 
a = 6.6 A, (or 2.5/k), c = 4.0/k for an A170ColsNi15 
decagonal quasicrystal are chosen that are suitable 
for atomic decoration of the quasilattice of the 
decagonal phase. 

1. Introduction 

Decagonal quasicrystals having tenfold rotational 
symmetry and one-dimensional translational sym- 
metry along the tenfold axis have been reported in 
rapidly solidified alloys of A1-Mn (Bendersky, 1985; 
Chattopadhyay, Lele, Ranganathan, Subbanna & 
Thangaraj, 1985), AI-Fe (Fung, Yang, Zhou, Zhao, 
Zhan & Shen, 1986), AI-Co (Dong, Li & Kuo, 1987; 
Suryanarayana & Menon, 1987), A1-Pd (Idziak, 
Heiney & Bancel, 1987) and A1-Ni (Li & Kuo, 1988). 

* Project support by the National Natural Science Foundation 
of China. 

The period along the tenfold axis was about 12 A, for 
A1-Mn and 16 A for A1-Co, A1-Fe and A1-Pd. In 
addition, a periodicity of 4 A along the tenfold axis 
has been reported in A1-Ni (Li & Kuo, 1988) and in 
the stable decagonal phases of A1CoCu and A1CoNi 
(Tsai, Inoue & Masumoto, 1989). In the system 
AICoCu, He, Wu & Kuo (1988) found decagonal 
quasicrystals with periodicities of 4, 8, 12 and 16 A, 
corresponding to two-, four-, six- and eight-layer 
stackings, respectively. 

The cut-and-projection method (Elser, 1985; Katz 
& Duneau, 1986; Jaric, 1986) affords an adequate 
indexing of diffraction patterns for the icosahedral 
quasicrystalline phase. Based on this method, an 
indexing scheme was described for the decagonal 
phase (Ho, 1986) and used by Koopmans, Schurer, 
van der Woude & Bronsveld (1987) and Thangaraj, 
Subbanna, Ranganathan & Chattopadhyay (1987) in 
the interpretation of their data for the A1-Mn deca- 
gonal phase. These authors support the concept of 
the derivation of an indexing model that has a 
periodic axis c by a distortion of the icosahedral 
vertex basis, to a pentagonal-bipyramid (PB) edge- 
vector basis (Ho, 1986). Choy, FitzGerald & 
Kalloniatis (1988) provided a more straightforward 
index system, which uses a planar pentagonal basis 
set plus the periodic axis. These two index systems 
are equivalent. Mandal & Lele (1989, 1991) gener- 
ated the direct and reciprocal space of a one- 
dimensionally periodic quasicrystal by simultaneous 
distortion of the six-dimensional hypercubic cell 
along one of its edges and also of the icosahedron 
(formed by projection of the six-dimensional basis 
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vectors on to physical space) along one of its vertex 
vectors. In addition, these authors proposed a six- 
dimensional lattice for the decagonal phase. 

We introduce here a general principle of the pro- 
jection method from which all necessary matrices for 
projection can easily be deduced after the basis set in 
physical space has been selected. This general prin- 
ciple is suitable for the description of the decagonal, 
octagonal and other two-dimensional quasicrystals, 
and also the icosahedral and cubic quasicrystals after 
some minor changes. By application of this general 
principle of the projection method to the case of the 
decagonal quasicrystals, we obtain an index system 
that is suitable for all known decagonal phases 
having different periodicities (4, 8, 12 and 16 ,~). The 
first index in our index scheme is related to the 
periodic tenfold axis A10 of the decagonal quasi- 
crystals. 

In the previous reports, investigation was limited 
to the AI-Mn decagonal phase with its periodicity of 
12/~ along the tenfold axis. With the assumption 
that 4 ,~ is the shortest period along the tenfold axis 
and that Kikuchi-line patterns provide more 
information than do selected-area electron diffrac- 
tion (SAED) patterns, we studied Kikuchi-line pat- 
terns and SAED patterns of an Al70ColsNil5 
decagonal phase with a period of 4/~ by selecting an 
appropriate straightforward index system. The com- 
putations provide good agreement with experiment. 

2.  I n d e x  s c h e m e  a n d  i n f l a t i o n  p r o p e r t i e s  

2.1. General prOwiple of the projection method 
A decagonal quasilattice may be described by the 

projection of a six-dimensional cubic-tetragonal lat- 
tice with basis vectors 6 = [e te2e3e4e5e6]  into three- 
dimensional (3D) physical space. These basis vectors 
possess the metric tensor 

k 2 
0 
0 

G = ~T~ = A2 0 

0 
0 

where the superscript r 

0 0 0 0 0  
1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 1  

(1) 

means the transpose of the 
matrix. Equation (1) shows 
are orthogonal to each other 
for ~ and A for ~j (j = 2, 3, 4, 5, 6). 

The inverse'of the metric G is 

G -  t = (1/A 2) 

that these basis vectors 
and their moduli are kA 

1 / ~ 0 0 0 0 0  
0 1 0 0 0 0  
0 0 1 0 0 0  
0 0 0 1 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  

, ( 2 )  

from which we can construct the reciprocal basis 
vectors ~* = [ez e2 e3 e4 e5 er], 

~ , r  = G-l~r. (3) 

Therefore, the reciprocal basis vectors 6;* are also 
orthogonal, with moduli of 1/kA for el* and 1/A for 
the other ~j*. 

We now introduce an inverse metric tensor 

G* = ~,r~, .  (4) 

Insertion of (3) into (4) gives 

6* = (6 - I )T=  6 - I  (5) 

Let the orthogonal and normalized basis sets in 
the parallel (physical) space be El, E2, E3 and that in 
the orthogonal (complementary) space be E4, Es, E6. 
Suppose the relationship between 6 and E =  
[El E2 E3 E4 E5 E6] r is 

~T= A 

k 0 0 0 0 0  
0 
0 
0 S 
0 
0 

then we have 

~ , r =  (l/A) 

l / k 0 0 0 0 0  
0 
0 
0 S 
0 
0 

E r, (6a) 

E r (6b) 

[: 0] ( e , ± ) r =  (I/A) S~ Er' (9b) 

where 0 signifies that the rest of the row or column is 
composed of zeros. By inserting (6a) into (1) we 

which can be expressed as 

(e ' l ) r=A[ k S01]E r, (8a) 

[o o o] (e±) r - -  A S~ Er' (8b) 

(e*ll)r= (1/A) [ 1/kO sIO ] Er (9a) 

and 

where S = [S1Sr], Sl and Sr are 5 × 5, 5 × 2 and 5 x 3 
matrices, respectively. 

The six-dimensional basis vectors ei and ei* may 
be decomposed into parallel and orthogonal com- 
ponents: 

= e rl + e -J-" 
(7) 

~* = e *fl + e*  a.. 
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obtain 

S S  r =  I (10) 

with I being a unit matrix. From (6) and (10) we 
obtain 

ET=(1/A) [1/k fir] 6T (1 la) 

and 

Then, by inserting ( l la )  into (8a) we obtain an 
expression for the projection matrix pII, 

(ell)r = pilot  (12a) 

with 

,,--[: [': 
Similarly, we have 

with 

and 

(12b) 

(e±)T = p J.~T (13a) 

P ± = [ 0 ]  [ 0 S T ] S r  (13b) 

pII + p ± = I. (14) 

2.2. Index  scheme f o r  the decagonal phase 

For the decagonal phase we choose the 5 x 2 
matrix $1 in (8a) as 

1 0 ] 
C2 $2 

S1 = (2/5) 1/2 - c i  sl , (15) 
- c  I - -s  1 

C2 - -  $2 

where 

cl = cos(27r/10) = 7-/2; 

C 2 = cos(2rr/5) = 1/27"; 

s l = sin(27r/10) = (3 - 7-)i/2/2; 

s2 = sin(2rr/5) = (2 + r)~/2/2; 

with 7"= (1 + 51/2)/2 being the golden mean and 

1 + 2c~ z + 2c 2 = 2s 2 + 2s] = 5/2; 

s,s2+c,c2=s]-c]=c,; s,s2-c,c~=c~-s~=c2. 
Fig. l(a) shows the relationship between e; II and the 
unit vectors El, Ez, E3 in the parallel space as 
selected by (5 ) .  Inserting (15) into (12b) we get 

e~  = (1/5)  

5 0 0 0 0 0 
0 2 1/7" -~-  -7 -  1/7" 
0 1/7" 2 1/7" -7" -7" 
0 -7" 1/7- 2 1/7" -7" 
0 -7" -7" 1/7" 2 1/7" 
0 1/7" -7" -7" 1/7" 2 

(16) 

and, from (14), 

0 0 0 0 0 i ] 0 3 -1/7- 7- r - /7- 
P ± = ( 1 / 5 )  0 -1/7- 3 - 1 / r  7- 

0 7" -1/7"  3 -1/7"  . (17) 
0 7" 7" -1/7"  3 -1/7"[  
0 - 1 / 7 "  7" 7" -1/7"  3 J 

Inserting (17) into (13a), we obtain the mutual rela- 
tionships between the ej ±, 

lej±l = (3/5) l/z, 

cos(ej ±,ej+_ i ±) = - 1/37", 

and 

cos(ej±,ej_+2 ±) = z/3 

for j =  2, 3, 4, 5, 6 and el ± = 0 .  To fulfill these 
relationships we can select ej ± as 

with 

[E4] 
( e l )  T =  A S~ E6 

1 0 
- -  Cl $1 

Sr = (2/5) I/2 c2 - s2 
C2 $2 

- -  C l  - -  $1 

which are shown in Fig. 1 (b). 

1/21/2 
1/21/2 
1/2 !/2 
1/21/2 
1/21/2 

(18a) 

, (18b)  

and 

[E,] gll = (glllg21i g311) E2 (19c) 
E3 

IE41 g± = (g~±g2±g3 ±) E5 (19d) 
E6 

being the components in physical and comp- 
lementary spaces of the six-dimensional vector ~,. 
Since the relationship between different components 
of a reciprocal vector is the same as between the 
corresponding basis vectors, from (1 l a) we have 

I  
, ,1  

w 

g311J 

with 

A six-dimensional vector fg may be expressed as 

~, = n%* r (19a) 

with 

n* = [n~*n2*n3*n4*ns*n6*] 

being the six-dimensional indices of g or 

= gll + g -  (19b)  
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and 
gl i ] 
gz l l  = (I/A)[0 Sr r] (n*) r. (21) 

3 ± ] 

Similarly, the components of a six-dimensional lat- 
tice vector 

[Eli = n e T =  R II + R ± = [RI II R2 II R3 It] E2 

E3 

+ [RI±RzXR3 ±] 

satisfy the relationships 

[ R~ll] 
R211 / = A 
R311J 

and 

with 

[E4] 
E5 (22) 
E6 

I RIS. ] R21[ 
R3 ] 

[k S Or] n r (23) 

= A [0 S f ]  n r (24) 

n = [nlnzn3n4nsn6] 

being the six-dimensional indices of 1/. 

tE2 

( a )  

E5  

,. _ E 4 

 .25Z/ 
(b) 

Fig. I. (a) Diagram showing the physical-space components e/rl of 
the six-dimensional basis vectors ei. (b) Stereographic projection 
diagram showing the complementary space components e /  of 
the basis vectors ~. Each point shown is the endpoint of a 
vector e, x 

From (8a) and (15) the decagonal quasilattice 
parameters a and c are expressed as 

a = (2/5)mA, c = kA, (25a) 

where a is the length of  ej II ( j  = 2, 3, 4, 5, 6) and c is 
the length of el II. Similarly, the reciprocal decagonal 
quasilattice parameters a* and c* are expressed as 

a*= 2/(5a), c*= l/c. (25b) 

In the case of crystals, the zone relation 

R'g = 0 (26a) 

is expressed as 

[u v w] = 0, (26b) 

where [u v w] are the indices of the zone R and (h k/)  
are the indices of reciprocal vectors g belonging to 
the zone R. However, from (20), (23) and (12b), the 
zone relation 

RII.gll = 0 (26c) 

in the case of decagonal quasicrystals should be 
expressed as 

npIIn*r = 0. (26d) 

2.3. Computer simulation 

In this work, we use a simplified formula to calcu- 
late the diffraction intensities, 

I(g) = f(0)  exp( - g±), (27) 

where f(0)  = 0.7fAl(0) + 0.15fco(0) + 0.15fNi(0) is the 
mean atomic scattering factor for A170ColsNii5 
decagonal phase and g± is the magnitude of g±. The 
variation off(0)  with the Bragg angle 0 is considered 
by the empirical expression 

4 
f(O) = Z ai exp(-bisin20/A z) + c, (28) 

i=l  

where • is the wavelength and a,, b; and c are 
constants, the values of which were fitted by Jiang & 
Li (1984). 

According to the cut-and-projection method and 
the index system (§2.2), all six-dimensional reciprocal 
lattice vectors ~(nl*, nz* . . . .  , n6* ) with 0_< n l*<  3, 
- 2 _< n;* ___ 2 (i = 2, 3, ..., 6) were projected onto the 
parallel space to obtain the three-dimensional 
reciprocal quasilattice vectors gll(nl* , n2*, ..., n6*). 
Only those grl with intensities larger than a given 
value Imin were  output and the stereographic projec- 
tions of the traces of the planes perpendicular to 
these glE were drawn. Fig. 2 shows such a stereogra- 
phic projection diagram with only the 17 strongest 
traces. From Fig. 2, it can be seen that the zone axes 
A, C, D , E , F ,  G , H ,  L J ' , J , K ,  M andNlabe l l ed  
following the scheme evolved by Thangaraj et al. 
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(1987) and Daulton, Kelton & Gibbons (1991) are 
important at which some strong traces of planes 
intersect. With knowledge of the indices nj* of these 
traces and a change of the indices ny (0 --- nl -< 4 and 
- 8  _< nj _< 8 for other nj) of possible zone axes, the 
indices of each zone axis were selected according to 
the zone relation (26d); see Table 1. Moreover, the 
real-space angles between the unique tenfold axis 
and other main zone axes have been calculated; see 
Table 2. 

From the indices nj* of the traces gll near a zone 
axis in Fig. 2 and calculation of their Bragg angles, a 
Kikuchi-line pattern of that zone axis can be 
obtained (Fig. 3). The indices, moduli and calculated 
intensities of the Kukuchi lines in Fig. 3 are listed in 
Table 3. 

The simulation procedure of an SAED pattern of 
the zone axis R II is as follows. All the six-dimensional 
reciprocal lattice vectors fg(n*) with - 3 - < n 1 " - < 3  
and -2---ny*---2 for other ny* are selected in turn 
and their corresponding three-dimensional vectors 
gn(n*) are calculated according to (20). Only those 
reflections g[I that satisfy the zone relation (26d) and 
have intensities larger than a given value l m i  n a r e  

output. 

2.4. Inflation and deflation 

According to Fig. l(a) and equations (8a) and 
(15), if we select another basis vector set e II' = [elll'e2 I1' 
e311' e4 II' e5 II' e6 II'] as 

e II' = ellM (29) 

Table 1. Indices of the prominent 'zone axes' of 
A1---Co-Ni decagonal phase 

T h e  p a t t e r n  

P a t t e r n  Z o n e  indices  
labels  nl n2 n3 n4 n5 

A 1 0 0 0 0 
C 1 - 1  1 - 2  0 
D 1 2 - 2  - I  0 
E 1 - 3  3 - 6  0 
F 1 6 - 6  - 3  0 
G 0 1 - 1  0 0 
H 0 0 0 0 0 
I 1 7 - 8  - 8  7 
J I 2 - 3  - 3  2 
M 1 3 - 2  - 2  3 
N 2 - 2  - 2  - 2  -2  

labels  a re  those  ass igned  in Fig.  2. 

Z o n e  indices  
n6 nl  ' n2 t n3 '  //4' nS' n6 '  

0 1 0 0 0 0 0 
2 1 - !1 I1 - 7  0 7 
1 1 7 - 7 4 0 - 4 

6 1 - 3 3  33 - 2 1  0 21 
3 1 21 -21  12 0 - 1 2  
0 0 1 - 1 0 0 0 
1 0 0 0 0 0 1 
7 1 37 7 7 37 - 8  
2 1 7 - 3 - 3 7 - 8 

- 2  ! 18 - 7  - 7  1 8 - 2 2  
3 2 - 2 7 - 1 2 - 1 2 - 2 7  - 2  

Table 2. Real-space angles (°) between the unique 
tenfold axis and other prominent zone axes of 

AI-Co-Ni  decagonal phase 

P a t t e r n  C D E F G H I J M N 
Observed 32.0 45.3 62.7 73.2 89.9 90.5 79.9 63.1 26.5 30.7 

(+_0.8 ° ) 
Calculated 31.82 45.11 61.75 71.63 90.00 90.00 80.10 62.36 36.11 30.54 

with the inflation matrix 

M =  

1 0 0 0 0 0 
0 0 0 - 1  - 1  0 
0 0 0 0 - 1  - 1  
0 - 1  0 0 0 - 1  
0 - 1  - 1  0 0 0 
0 0 - 1  - 1  0 0 

(3o) 

then we have el I1' = el II and (.ill' = zey II 0" = 2, 3, ..., 6). 

O000iO -G 

Fig. 2. C a l c u l a t e d  s t e r e o g r a p h i c  p r o j e c t i o n  d i a g r a m  s h o w i n g  m a i n  t races  o f  AlToCOlsNi15 d e c a g o n a l  quas i l a t t i ce  p lanes  a n d  m a i n  z o n e  
axes  A, C, D, E,  F, G, H ,  L J ' ,  J ,  K, M a n d  N. 
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The corresponding reciprocal basis e *11' 
e3*n'e4*ll'es*ll'e6 *11'] will be transformed as 

(e*ll')r = M*(e*ll)r 

with 

M* = (1/2) 

2 0 0 0 0 
0 - 1  1 - 1  - 1  
0 1 - 1  1 - 1  
0 - 1  1 - 1  1 
0 - 1  - 1  1 - 1  
0 1 - 1  1 1 

and 

= [et*ll' e2,11, 

(31) 

0 
1 

- 1  
- 1 (32)  

1 
- 1  

A I M *  = L (33) 

From (31) and (32) we have 

e~ *ll' = e~ *fl and ej *11' = (l/r)ej*ll (j = 2, 3, ..., 6). 

Therefore, the indices of gll and R II will be corre- 
spondingly transformed as 

n*' = n * M  (34)  

and 

(n') r =  M*n r. (35) 

Such an inflation property means that the indexing 
of the reflections of the decagonal quasicrystal is not 
unique. The indices of all reflections and zone axes 
may be inflated and deflated according to the 
matrices M and /14", respectively, and the magni- 
tudes of the basis vectors a* and a are correspond- 
ingly deflated and inflated by the factors of 1/r and 
r, respectively. 

3. E x p e r i m e n t a l  

3.1. Experimental  method  

The Al70COlsNi~5 alloy was prepared by melting 
the pure metals using a high-frequency induction 
furnace under an Ar atmosphere. After it had cooled 
to room temperature, the ingot was annealed in a 
vacuum furnace at 1100 K for 48 h and then cut into 
slices from which thin-foil specimens for transmis- 
sion electron microscopy (TEM) were prepared by 
mechanical thinning and subsequent ion-milling. A 
Phillips EM-420 transmission electron microscope 
was used at an accelerating voltage of 100 kV to 
obtain the diffraction contrast images, SAED pat- 
terns and Kikuchi patterns. The latter were obtained 

° 

1 " 

3 \ 

/ /  

13 

I 

/ 
5 

6 

Fig. 3. Comparisons of experimental and simulated Kikuchi-line patterns. 
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Table 3. The indices and the moduli o f  the Kikuchi lines in Fig. 3 

N o .  n~*  n2*  n3*  t /a* n s *  n6*  n ~ * '  / '/2*' n3*"  n 4 * '  r t s* '  n 6 * '  gll i/ll  
i 0 0 0 0 - i 0 0 2 2 - ! - 3 - 1 0.41 i . 00  

0 0 0 0 1 0 0 - 2  - 2  1 3 l 
2 1 0 0 0 - 1 0 1 2 2 - 1 - 3  - 1 0 .48 0 .84 

- 1  0 0 0 1 0 - I  - 2  - 2  1 3 1 
3 1 0 0 1 0 0 1 - 2 1 3 1 - 2 0 .48 0 .84 

- 1  0 0 - 1  0 0 - 1  2 - 1  - 3  - 1  2 
4 1 0 0 0 0 - 1 1 - 1 2 2 - 1 - 3 0.48 0 .84 

- 1  0 0 0 0 1 - 1  1 - 2  - 2  1 3 
5 1 0 1 0 0 0 ! 1 3 1 - 2 - 2 0 .48 0 .84 

- 1  0 - 1  0 0 0 - 1  - 1  - 3  - 1  2 2 
6 1 - 1 0 0 0 0 1 - 3 - 1 2 2 - 1 0 .48 0 .84 

- 1  i 0 0 0 0 - 1  3 1 - 2  - 2  1 
7 3 0 0 1 0 0 3 - 2 1 3 1 - 2 0 .48  0.41 

- 3  0 0 - 1  0 0 - 3  2 - 1  - 3  - 1  2 
8 3 0 0 0 - 1 0 3 2 2 - 1 - 3 - 1 0 .84  0.41 

- 3  0 0 0 1 0 - 3  - 2  - 2  1 3 1 
9 3 0 0 0 0 - 1 3 - 1 2 2 - 1 - 3 0 .84  0.41 

- 3  0 0 0 0 1 - 3  1 - 2  - 2  1 3 
10 3 0 1 0 0 0 3 1 3 1 - 2 - 2 0 .84  0.41 

- 3  0 - 1  0 0 0 - 3  - 1  - 3  - 1  2 2 
11 3 - 1 0 0 0 0 3 - 3 - 1 2 2 - 1 0 .84  0.41 

- 3  1 0 0 0 0 - 3  3 1 - 2  - 2  I 
12 0 0 1 - 1 0 0 0 3 2 - 2  - 3  0 0 .49 0 .36 

0 0 - 1  1 0 0 0 - 3  - 2  2 3 0 
13 2 - 1 1 0 0 0 2 - 2 2 3 0 - 3 0 .69  0.23 

- 2  1 - 1  0 0 0 - 2  2 - 2  - 3  0 3 
14 2 0 - 1  0 0 - 1  2 - 2  - 1  1 1 - 1  0.55 0.21 

- 2  0 1 0 0 1 - 2  2 1 - 1  - 1  1 
15 2 1 0 1 0 0 2 1 2 1 - 1 - 1 0 .55 0.21 

- 2  - 1  0 - 1  0 0 - 2  - 1  - 2  - 1  1 1 
16 2 - 1  0 0 - 1  0 2 - 1  1 1 - 1  - 2  0.55 0.21 

- 2  1 0 0 1 0 - 2  1 - 1  - 1  1 2 
17 2 0 1 0 I 0 2 - 1 1 2 1 - 1 0 .55 0.21 

- 2  0 - 1  0 - 1  0 - 2  1 - 1  - 2  - 1  1 
18 2 0 0 1 0 I 2 1 I - 1 - 2 - 1 0 .55  0.21 

- 2  0 0 - 1  0 - 1  - 2  - 1  - I  1 2 1 

in this work mainly by elastic scattering under the 
large-angle convergent-beam electron diffraction 
(LACBED) mode (Williams, 1984). 

3.2. SAED patterns 

A17oColsNi15 thin foils consist of grains of the 
decagonal phase. Fig. 4(a) shows a near-twofold-axis 
bright-field image, where thin needles with zebra- 
contrast, parallel to the projection of the tenfold 
axis, can be seen. Fig. 4(b) shows the SAED pattern 
along the tenfold axis obtained from the AI-Co-Ni 
decagonal phase. 

SAED patterns of main zone axes were photo- 
graphed and the readings of the double-tilting 
goniometer at each zone axis were taken. From these 
readings the experimental angles between the unique 
tenfold axis and other main zone axes were obtained; 
they show good agreement with the calculated values 
(see Table 2). 

The main characteristics of the C, D, M and N 
zone-axis SAED patterns for A1-C(y-Ni decagonal 
phase are the same as for A1-Mn (FitzGerald, 
Withers, Stewart & Calka, 1988; Choy et al., 1988) 
but the J and G patterns (see Figs. 5a, 5b) are 
different from the corresponding J and G patterns 
for AI-Mn. In the A1-Mn decagonal phase, the J 

zone-axis SAED pattern is a degenerate fivefold 
pattern but Fig. 5(a) does not show any fivefold 
symmetry. In the G pattern shown in Fig. 5(b) there 
are six strong spots labelled as 8 and 10, forming a 
hexagon corresponding to a lattice-plane spacing of 
2 A. This characteristic is the same for all decagonal 
phases with periodicities an integral multiple of 4 A, 
as shown by He et al. (1988). The reciprocal vector 
corresponding to spot 10 is divided into two parts by 
the horizontal spot row consisting of strong reflec- 
tions (see Fig. 5b) for the A1-Co-Ni decagonal 
phase, which corresponds to the periodicity of 4 A, 
while it is divided into four, six and eight parts for 
other decagonal phases with periodicities 8, 12 and 
16/~, respectively (He et al., 1988). The presence of 
the horizontal weak diffraction streaks suggests an 
8 A periodicity parallel to the tenfold axis. These 
streaks may originate from thin needle-like order 
domains along the tenfold axis. Since these streaks 
are very weak, as a first-order approximation we 
neglect their contribution to simulated Kikuchi-line 
and SAED patterns. 

Firstly, we assign indices of (0 0 0 0 - 1 0) to the 
arrowed reflection 7 in Fig. 5(b) and indices of 
(2 0 0 0 0 0) to reflection 10. The ratio of the magni- 
tudes of these two reciprocal vectors is measured 
from Fig. 5(b) to be 0.85 (5), from which the co- 
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efficient 1/k is calculated to be 0.37 by use of (20). 
Under this indexing the quasilattice parameters for 
the Al7oConsNi~5 decagonal phase are determined to 
be a = 0.98 and c = 4.0 A. 

SAED patterns of all zone axes labelled in Fig. 1 
were simulated; they are in good agreement with 
experimental patterns except that the diffuse streaks 
similar to those shown in Fig. 5 were not simulated. 
Fig. 5 shows a comparison of the experimental 
(upper parts) and simulated (lower parts) SAED 
patterns of J (Fig. 5a) and G (Fig. 5b) zone axes. The 
indices and moduli of reflections labelled in Fig. 5 
are listed in Table 4. By comparison of the simulated 
and experimental SAED patterns, the diffraction 
spots in the experimental SAED patterns can be 
indexed. 

3.3. Kikuchi-line patterns 

Fig. 3 shows composite experimental Kikuchi pat- 
terns compared with the simulated patterns. The 
indices of the Kikuchi lines labelled in Fig. 3 and the 
moduli of the corresponding reciprocal vectors are 
listed in Table 3. From a comparison of the experi- 
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mental and simulated Kikuchi-line patterns, it is 
evident that their characteristics agree rather well 
with each other except that some experimental 
Kikuchi lines are bent owing to local bending of the 
foil specimen. 

3.4. Inflation o f  the basis sets and indices 

The quasilattice parameter a = 0.98 A as 
determined in §3.2 does not possess any physical 
meaning because it is smaller than conventional 
atomic distances. By inflation of the basis set by the 
inflation matrix M 4, the quasilattice parameters are 
changed to c' = c = 4/~ and a' = ~-4a = 6.6 A. This 
value of a' is in accordance with the atomic dec- 
oration of the decagonal Penrose lattice as proposed 
by Li & Kuo (1992). According to (34) and (35), the 
indices n* and n of the reciprocal vectors and the 
zone axes are changed into n*' and n', respectively. 
They are listed in Tables l, 3 and 4. If the basis set is 
inflated by the matrix M '~ then the quasilattice 
parameters will be changed to c" = c and a" = "r2a = 
2.5/~. This value of a" corresponds exactly to the 
atomic distance of the decagonal quasicrystals. In 
this case the atoms are situated at the Penrose lattice 
points with some vacant positions. 

4. Discussion 

From the similarity of some SAED patterns of the 
decagonal AI-Mn and the isosahedral AI-Mn quasi- 
crystals, Fung et al. (1986) described the decagonal 
phase by the relationship between these two types of 
quasicrystals. FitzGerald et al. (1988) abandoned 
this description. Our investigation of the 
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Fig. 4. (a) A near-twofold-axis bright-field image of the 
AlToCotsNi~5 decagonal phase. The striations with zebra con- 
strast are parallel to the local tenfold axis projection. (b) The 
SAED pattern of the AI-Co-Ni decagonal phase along the 
tenfold axis. 
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Fig. 5. Comparisons of experimental (upper parts) and simulated 
(lower parts) SAED patterns corresponding to (a) J and (b) G 
zone axes. 
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Table 4. The indices and modul i  f o r  the labelled reflections in Fig. 5 

No. hi* n2* n3* n4* n5* n6* Hi *t n2 *t n3 *t n4 *t ns* '  n6 *t g~[ 
1 0 0 0 l - 1  1 0 2 2 1 0 l 0.16 
2 0 0 0 - l 0 - 1 0 - 1 - l l 2 l 0.26 
3 l 0 0 l - l l ! 2 2 l 0 l 0.29 
4 l - l  l - l  0 0 l - l  0 - 1  - 2  - 2  0.29 
5 0 l - 1 l - l 0 0 2 l - 1 - 2  0 0.30 
6 l 0 0 - 1  0 - l  1 - !  - l  l 2 1 0.35 
7 0 0 0 0 - l  0 0 2 2 - l  - 3  - 1  0.41 
8 l 0 0 0 - l 0 1 2 2 - 1 - 3 - l 0.48 
9 0 0 1 - l 0 0 0 3 2 - 2 - 3 0 0.49 
l0 2 0 0 0 0 0 2 0 0 0 0 0 0.49 
II 2 - 1  0 0 - l  0 2 - 1  1 l - l  - 2  0.55 
12 2 l 1 0 ! - l  2 i 4 2 - 2  - 3  0.60 
13 0 1 I 0 0 0 0 4 4 - 1 - 4  l 0.64 
14 0 l 0 0 - I 0 0 5 3 - 3 - 5 0 0.79 

Al70CotsNi~5 decagonal phase with a periodicity of 
4 /~  supports further the suggestion made by 
FitzGerald et aL (1988). The strongest argument for 
this is the J pattern (Fig. 5a), which does not show 
any fivefold symmetry. The degenerate fivefold sym- 
metry of  the J pattern in the A1-Mn decagonal phase 
is only a chance event, caused when the periodicity 
along the tenfold axis is 12/~. 

FitzGerald et aL (1988) stated that "most  of  the 
reciprocal-lattice points contributing to a 'zone-axis' 
pattern do not lie exactly normal to the 'zone-axis' 
direction" and cited the degenerate fivefold J pattern 
as an example. Our work shows that there are indeed 
rigorous zone relations RIl'g It - -0  for the decagonal 
phase. The most important  stage is to select correctly 
the indices n of  a zone axis according to the expres- 
sion nP tin* -- 0 from several known indices n* of the 
reciprocal lattice vectors. Moreover, the so-called 
degenerate fivefold J pattern of  the A1-Mn decago- 
nal phase comes from two zones with very small 
interangle. 

By use of the inflation and deflation properties one 
can choose an appropriate quasilattice parameter a 
as the edge length of  the Penrose tiling. The value a 
= 0.98/~ does not possess any physical meaning 
because it is too small for atomic decoration. The 
three-times inflated parameter a ' =  "r3a=4.0/~ is 
exactly the value used by Zhang & Kuo (1990) and 
the four-times inflated parameter a' = ~'4a = 6.6/~ is 
very suitable for the structure model proposed by Li 
& Kuo (1992). 

The general principle of  the method described in 
this paper can be applied to other decagonal phases 
with different periodicities along the tenfold axis if 
the parameter k in (1) is changed. It can also be 
applied to other two-dimensional quasicrystals such 
as octagonal or dodecagonal phases. After some 

minor variations, this method can also be applied to 
the icosahedral and cubic quasicrystals. 
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